Written By: Lavanya Chavhan B.Pharm
Reviewed by Vikas Londhe M.Pharm (Pharmacology)

In a remarkable twist of scientific serendipity, researchers have discovered a powerful new antibiotic in an unexpected place a soil sample taken from a technician’s garden. The compound, named lariocidin, belongs to a rare class of antibiotics known as lasso peptides, and has shown promising results in combating drug-resistant bacteria.
A Backyard Breakthrough
Researchers from McMaster University in Ontario, Canada, and the University of Illinois, Chicago, led by Gerry Wright, worked together to discover lariocidin a compound shown to be effective against drug-resistant bacteria.
The discovery came during routine screening of soil samples for potential antimicrobial agents. One particular sample, taken from a home garden, yielded a previously unknown strain of bacteria that produced a unique antimicrobial compound. Upon further study, scientists isolated and characterized lariocidin, a small, intricately folded peptide that adopts a lasso-like structure.
Lasso peptides are named for their distinctive topology — a loop formed by the peptide backbone is threaded by its tail and locked into place, forming a mechanically constrained molecule. This unique structure often contributes to their stability and resistance to degradation, making them particularly appealing as drug candidates.
Lasso Peptide
A lasso peptide is a type of ribosomally synthesized and post-translationally modified peptide (RiPP) that has a unique and highly stable three-dimensional structure, resembling a lasso or slipknot.
Lasso peptides are characterized by A macrolactam ring (a circular peptide structure) at the N-terminus. A tail segment that threads through this ring during synthesis. The tail is “locked” in place by bulky amino acid residues or disulfide bonds, preventing it from slipping back out much like a rope threaded through a loop and pulled tight, hence the name lasso.
This structure is thermodynamically stable and resistant to heat, enzymatic degradation, and extreme pH conditions.
Targeting the Ribosome: A Novel Mechanism
What sets lariocidin apart is its mechanism of action. Unlike many antibiotics that attack bacterial cell walls or DNA replication, lariocidin targets bacterial ribosomes the machinery responsible for protein synthesis. It binds tightly to the ribosome and disrupts translation, halting the production of essential proteins needed for bacterial survival and replication.
Structural studies revealed that lariocidin latches onto a previously underexplored site on the ribosome, a feature that likely contributes to its efficacy against multi-drug resistant strains. This includes pathogens such as Staphylococcus aureus, Enterococcus faecium, and certain strains of Pseudomonas aeruginosa, which have become increasingly difficult to treat with conventional antibiotics.
A Weapon against Superbugs
The rise of antibiotic resistance is a global public health crisis. Each year, antimicrobial-resistant infections claim hundreds of thousands of lives worldwide. The emergence of lariocidin offers a glimmer of hope, especially since it belongs to a relatively untapped class of natural antibiotics with novel mechanisms of action.
Early laboratory studies have demonstrated that lariocidin is not only potent but also exhibits low toxicity to human cells, an essential step toward potential clinical development. Researchers are now working to synthesize analogs of lariocidin, optimize its pharmacokinetics, and assess its efficacy in animal models of infection.
Current status of Lariocidin
In preclinical testing, lariocidin showed strong antibacterial effects without exhibiting toxicity to human cells. In mouse models infected with A. baumannii, the antibiotic significantly lowered bacterial levels and improved survival outcomes.
At present, scientists are working to optimize lariocidin’s potency and are developing scalable production methods to support future clinical use. Although the results so far are encouraging, additional research and clinical trials are essential to confirm its safety and effectiveness in humans.
Nature Still Has Secrets to Reveal
The story of lariocidin is a potent reminder that nature, even in the soil of a backyard garden remains a vast and largely unexplored resource for life-saving compounds. With rising antibiotic resistance threatening global health, the discovery underscores the importance of continued investment in natural product research and microbial biodiversity.
If further studies validate its safety and effectiveness, lariocidin could represent the first in a new class of antibiotics, one that might help turn the tide against resistant bacterial infections.
References
1.Jangra, M., Travin, D.Y., Aleksandrova, E.V. et al.A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome. Nature(2025). https://doi.org/10.1038/s41586-025-08723-7
2. New lasso-shaped antibiotic kills drug-resistant bacteria, Nature Podcast, Nature, 26 March 2025
3. Julian D. Hegemann, Marcel Zimmermann, Xiulan Xie et al, Lasso Peptides: An Intriguing Class of Bacterial Natural Products, Accounts of Chemical ResearchVol 48, Issue 7 2015
4. Cheng Cheng, Zi-Chun Hua et al, Lasso Peptides: Heterologous Production and Potential Medical Application, Front. Bioeng. Biotechnol. Volume 8 – 2020 https://doi.org/10.3389/fbioe.2020.571165
5. Digging in the dirt: Scientists discover a new antibiotic compound from an old source, University of Minnesota, 31 March 2025
6.Molecule Discovered In Backyard Soil Can Fight Drug Resistant Bacteria, Technology Networks Immunology and Microbiology, 28 March 2025